Evidence for bouncing evolution before inflation after BICEP2.

نویسندگان

  • Jun-Qing Xia
  • Yi-Fu Cai
  • Hong Li
  • Xinmin Zhang
چکیده

The BICEP2 Collaboration reports a detection of primordial cosmic microwave background (CMB) B mode with a tensor-to-scalar ratio r = 0.20(-0.05)(+0.07) (68% C.L.). However, this result disagrees with the recent Planck limit r < 0.11 (95% C.L.) on constraining inflation models. In this Letter we consider an inflationary cosmology with a preceding nonsingular bounce, which gives rise to observable signatures on primordial perturbations. One interesting phenomenon is that both the primordial scalar and tensor modes can have a step feature on their power spectra, which nicely cancels the tensor excess power on the CMB temperature power spectrum. By performing a global analysis, we obtain the 68% C.L. constraints on the parameters of the model from the Planck+WP and BICEP2 data together: the jump scale log(10)(k(B)/Mpc(-1)) = -2.4 ± 0.2 and the spectrum amplitude ratio of bounce to inflation r(B) ≡ P(m)/A(s) = 0.71 ± 0.09. Our result reveals that the bounce inflation scenario can simultaneously explain the Planck and BICEP2 observations better than the standard cold dark matter model with a cosmological constant, and can be verified by future CMB polarization measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viability of the matter bounce scenario in Loop Quantum Cosmology from BICEP2 last data

The CMB map provided by the Planck project constrains the value of the ratio of tensor-to-scalar perturbations, namely r, to be smaller than 0.11 (95 % CL). This bound rules out the simplest models of inflation. However, recent data from BICEP2 is in strong tension with this constrain, as it finds a value r = 0.20 −0.05 with r = 0 disfavored at 7.0σ, which allows these simplest inflationary mod...

متن کامل

A Clearer View of a Dusty Sky

The theory of inflation hypothesizes that the Universe underwent a period of rapid expansion less than 10−32 seconds after its birth [1]. If inflation occurred, physicists believe it would have produced large-scale gravitational waves, imprinting a slight swirl-like polarization—known as B modes—on the cosmic microwave background (CMB), the light generated when the Universe was 380,000 years ol...

متن کامل

Gravitino problem in supergravity chaotic inflation and SUSY breaking scale after BICEP2

Article history: Received 24 April 2014 Accepted 26 May 2014 Available online 2 June 2014 Editor: J. Hisano Gravitinos are generically produced by inflaton decays, which place tight constraints on inflation models as well as supersymmetry breaking scale. We revisit the gravitino production from decays of the inflaton and the supersymmetry breaking field, based on a chaotic inflation model sugge...

متن کامل

A model-independent fit to Planck and BICEP2 data

Inflation is the leading theory to describe elegantly the initial conditions that led to structure formation in our universe. In this paper, we present a novel phenomenological fit to the Planck, WMAP polarisation (WP) and the BICEP2 datasets using an alternative parameterisation. Instead of starting from inflationary potentials and computing the inflationary observables, we use a phenomenologi...

متن کامل

Dark matter chaotic inflation in light of BICEP2

We propose an economical model in which a singlet Z2-odd scalar field accounts for the primordial inflation and the present dark matter abundance simultaneously in the light of recent BICEP2 result. Interestingly, the reheating temperature and the thermal dark matter abundance are closely connected by the same interaction between the singlet scalar and the standard model Higgs. In addition, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 112 25  شماره 

صفحات  -

تاریخ انتشار 2014